The number 10^{486}–1 is the smallest number of the form 10^{k}–1 that is divisible by a prime p with the properties:
The prime p above is 487, and the complete factorisation of 10^{486}–1 is:
3^{7} × 7 × 11 × 13 × 19 × 37 × 163 × 487^{2} × 757 × 1459 × 9397 × 52579 × 69499 × 333667 × 2462401 × 67430557 × 70541929 × P10 × P11 × P15a × P15b × P18 × P24a × P24b × P27 × P138 × P144
where
P10 = 2458921051 P11 = 14175966169 P15a = 440334654777631 P15b = 676421558270641 P18 = 456502382570032651 P24a = 411361786890737698932559 P24b = 610600386089858349939139 P27 = 130654897808007778425046117 P138 = 810316718654935254370114242173495345974018609204623064367629310709846283.. ..851718998731856856949061264781563433202832207926987960406521712613 P144 = 899718757349577828631761341730093220713822770643140264600436229195941807.. ..849819816835925771559643276518390048146301688389176642719947087961896703
Some of these primes are factors of 10^{k}–1 for some smaller k. In the following table, for each p the smallest k is given so that p divides 10^{k}–1.



The factorisation was performed in 1997 on a 66 MHz 486 PC with the free program UBASIC written by Yuji Kida at Rikkyo University, using the ECM factorisation program (ECMX) which comes with UBASIC. It took about two days. The program had to be slightly modified in order to prevent it from doing primality checks for which the numbers involved would have been too large. Instead the necessary primality checks were done with the program APRTCLE of the same package.
Factoring a 486 digit number is generally a hopeless endeavour, even 25 years later. Here, however, a lot of factors were known in advance: for each d that is one of the numerous factors of 486, 10^{d}–1 is a factor. This allows splitting the number into pieces of no more than about 170 digits. This is still too large, but the largest factors so found turned out to be the product of only two primes each, one of them about 30 digits long. Now a 30digit factor can be found by the ECM method, and a 140digit number can be proven prime by APRT–CLE. It this thus fair to say that the number could only be factored by good luck.